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THE INEFFICIENCY OF LEAST SQUARES:
EXTENSIONS OF KANTOROVICH INEQUALITY

C. Radhakrishna Rao

ABSTRACT

Four different measures of inefficiency of the simple least

squares estimator in the general Gauss-Markoff model are considered.

Previous work on the bounds to some of these measures is briefly

reviewed and new bounds are obtained for a particular measure. (

Keywords: Inefficiency of least squares, Kantorovich inequality.
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1. INTRODUCTION

Let us consider the usual Gauss-Markoff model

Y = X6 + c, E(E) 0, D(c) = a2 (1.1)

where Y and E are n-vectors, B is an m-vector, X is an nx m matrix and
2V

o V , the dispersion matrix of e, is positive definite. In practice

V may be unknown in which case the estimate of B is computed by

choosing an apriori dispersion matrix V in the place of V. A number
a

of authors have investigated the loss of information in the estimation

of k resulting from a wrong choice of V. See for instance, Bloomfield

and Watson (1975), Khatri and Rao (1981,1982), Knott (1975) and

Styan (1983). The object of the present paper is to review some of the

earlier results and provide a generalization of a recent result by

Styan (1983).

There is no loss of generality in assuming V = I for the problema

associated with V and V, when V is positive definite, is the same asa a

that with I and V- 1/2 V V-112 for purposes of the present investigation.
a a

Also, we consider the basic parameter as XB and study the inefficiency

of its estimation due to a wrong choice of V. In such a case, we can,

without loss of generality, consider X to be of full rank with its

column vectors as orthonormal. Then the simple least squares estimator

and the BLUE of XB are

XX'Y and X(X'V- 1x) -x' v-y (1.2)

with the dispersion matrices (apart from the multiplying constant a 2)

XX'VXX' and X(X'V- X) X-I (1.3)
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If V = P .'. P' is the spectral decomposition of V, where P is an ortho-

gonal matrix and A is a diagonal matrix of eigenvalues of V, then

the matrices in (1.3) can be written as

PUU' A UU'P' and PU(U'A-1U)-Iu'p' (1.4)

where U = P'X and hence U'U = I. In the next section we define a

number of measures of inefficiency based on a comparison of the

matrices in (1.3) for (1.4) and determine their lower and upper bounds.
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2. MEASURES OF INEFFICIENCY AND THEIR BOUNDS

By construction, the differencebetween the first and second

matrices in (1.4) is non-negative definite and the magnitude of the

difference can be judged by the magnitudes of the proper nonzero

eigenvalues (Rao and Mitra, 1971, 124-126) of the first matrix with

respect to the second. If e is a proper nonzero eigenvalue, then

PUU' A UU'P'x= ePU(U'A U) U'P'x (2.1)

where the left and right hand sides of (2.1) do not individually

vanish. In such a case, multiplying both sides of (2.1) by U'P' and

writing y = U'P'x, we have

-1 -1
U' AUy = e(U'A U) y (2.2)

so that 6 is a root of the determinental equation

IU' A U - 8(U'A- U)-II = 0. (2.3)

We may choose any increasing function of the roots e, ...,em of

(2.3) as a measure of inefficiency, such as e1 ... m ore 1 + ... +em.

Bloomfield and Watson (1975) and Knott (1975) have established the

bounds
2

m s (xi+xni+1 )
1 < H e. < 1 (2.4)

1 i=l 4X X
i n-i+l

where X > A > A are the diagonal elements of A (i.e., the
1- 2 ... n

eigenvalues of V)and s = min(m, n-m). Khatri and Rao (1981) estab-

lished that 2
m s (A n-+A1 i+l)

m < n I + t (2.5)
1iX i n-i+l

where s = min(m, n-m), and t - 0 if s m and t 2m-n if s = n-m.
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Puntanen (1982) suggested the use of

tr(PUU'A UU'P' - PU(U'A-U)-1u'P') (2.6)

as a measure of inefficiency. The expression (2.6) reduces to

tr(U' A U - (U'A-1U) - l) (2.7)

In the special case when m = 1, Styan (1983) showed that

-1 -l 20 < U' A U - (U'A U) < ( _ ' ) . (2.8)

We provide the following generalization for higher values of m.

Theorem. For general m

_ ~ tr(U' A U - -1-1 n
- )2 (2.9)

(U U)i= l n-i+l

where s = min(m, n-m).

Proof. We find the stationary values of (2.7) subject to the

condition U'U = I. Introducing a symmetric matrix A of Lagrangian

multipliers we consider the expression

tr U'A U - tr(U'A-I U) - tr A(U'U - I). (2.10)

Taking derivatives of (2.10) with respect to the elements of U (see

Rao, 1984) and equating to zero, we have

U'A + (U'A-1u)- 2 U'A- I = AU' (2.11)

which gives

U' A U + (U'A-I U) = A. (2.12)

4 Then the equation (2.11) reduces to

U'A + (U'A-1U) -2 U'A- I - (U'AU + (U'A-IU)-I)U'. (2.13)

Multiplying both sides of (2.13) from the right by AU
4

U' A2U + (U'A-IU)-1 = (U' AU) 2 + (U'A-1U) - 1 (U' AU) (2.14)

i
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which shows that the last term in (2.14) is symmetric or the matrices

U'A U and U'A-IU commute. Then, there exists an orthogonal matrix Q

such that

U'AU = Q EQ' and U' A1 u = Q A Q' (2.15)

where A and E are diagonal matrices with diagonal elements, say,

dI .... d and e I .... e . Writing W = UQ, the equation (2.13) becomes1 ' m

AW + A -1 W L -2 = W(E + -). (2.16)

Let (wI ... ,w)' be the J-th column of W. Then

-1 -2 -1W + X w. d = w.(e. + d. ), i = 1,...,n (2.17)ii 1 1 J 1 j .J

which shows that at most two values of w. can be nonzero. If w and
1 r

w are non-zero, then

X + X-i d. = (e. + d I ) (2.18)
S .3 3

has two roots X and X and it is seen that
r s'

e. d- ('- ) (2.19)
j j r s

If only one w. is non-zero, then

1-
l-

e. -d . 0. (2.20)

The expression we have to maximize is

-1 -1 -1
tr(U' A U - (U'A U) ) tr(E - A)

m -
( Ce. - d.) (2.21)

1 3

where each term in (2.21) has the value zero as in (2.20) or a value of

the type (V'F - VX )2 as in (2.19). Using arguments similar to those
r s

in Bloomfield and Watson (1975) and Knott (1975), we find the maximum

of (2.7) is

)2 (2.22)
1= I n-i+l
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where s = min(m, n-m), which proves the required result.

Remark 1. In terms of the original matrices X and V where X need

not be assumed to have orthonormal columns, the matrices in (1.3) can

* be written as

PxVPx and P x(Px V- P X  PX (2.23)

where PX = X(X'X) X', the projection operator on the space generated

by the columns of X and (.) denotes any generalized inverse. Then the

-result (2.9) of the Theorem can be written as

0 < tr(P VPx - P (P V-P ) ) p < I () i - r,-il )2 "

- x x x x x -il n-i+

(2.24)

where X. are the eigenvalues of V. Let x. be the corresponding eigen-

vectors and denote

Ei xi ± L- i+nil i+1[ + +
(2.25)

It is seen that the upper bound in (2.24) is attained when the columns

of X are generated by the vectors El' .''s and some xi vectors

orthogonal to &V .... 9s"

Remark 2. When m = 1, simple proofs are available for the

inequalities (2.4) and (2.9) as given by Styan (1983).

S
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3. ANOTHER MEASURE OF INEFFICIENCY

In a paper presented at the Fifth Berkeley Symposium in 1965, the

author showed that there is no loss of information in estimation by

simple least squares if V and X satisfy the condition X'VZ = 0 where

Z is any matrix with maximum rank such that X'Z = 0 (see Rai, 1967).

The equivalent condition P XV = VPX was given by Zyskind (1967). The

condition X'VZ = 0 = PxVZ is equivalent to

0 = P xVZ(Z'Z) Z'VPX = P V(I - P X) VP x

= xV2P- (Px VP x)(PXVPX )  (3.1)

Bloomfield and Watson (1975) considered (3.1) as a measure of

inefficiency and showed that

2 s 2
0 < tr(P V - P VP VP) < X -

K 1=1 X n+i-l~

i1:1
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